Bimetallic Metal-Organic Framework Derived Nanocatalyst for CO2 Fixation through Benzimidazole Formation and Methanation of CO2

نویسندگان

چکیده

In this paper, a bimetallic Metal-Organic Framework (MOF) CoNiBTC was employed as precursor for the fabrication of nanoalloys CoNi@C evenly disseminated in carbon shells. These functional nanomaterials are characterized by powdered X-ray diffraction (PXRD), Fourier Transform Infra-Red spectroscopy (FTIR), surface area porosity analyzer, photoelectron (XPS), Field emission scanning electron microscopy (FESEM), Transmission (TEM), Hydrogen Temperature-Programmed Reduction (H2 TPR), CO2 Desorption (CO2-TPD), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This nanocatalyst utilized synthesis benzimidazole from o-phenylenediamine presence H2 good yield 81%. The catalyst also efficient manufacture several substituted benzimidazoles with high yield. Due to existence nanoalloy Co Ni, methanation selectivity (99.7%).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Metal-Organic Frameworks for Chemical Fixation of CO2.

A novel series of two zirconium- and one indium-based metal-organic frameworks (MOFs), namely, MOF-892, MOF-893, and MOF-894, constructed from the hexatopic linker, 1',2',3',4',5',6'-hexakis(4-carboxyphenyl)benzene, were synthesized and fully characterized. MOF-892 and MOF-893 are two new exemplars of materials with topologies previously unseen in the important family of zirconium MOFs. MOF-892...

متن کامل

CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers

Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of th...

متن کامل

Metal–Organic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates

M. Hassan Beyzavi , Casey J. Stephenson and Yangyang Liu have contributed equally to this work. As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs), a functionality having many important industrial appl...

متن کامل

Metal-Organic Frameworks for CO2 Chemical Transformations.

Carbon dioxide (CO2 ), as the primary greenhouse gas in the atmosphere, triggers a series of environmental and energy related problems in the world. Therefore, there is an urgent need to develop multiple methods to capture and convert CO2 into useful chemical products, which can significantly improve the environment and promote sustainable development. Over the past several decades, metal-organ...

متن کامل

Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions.

Crystal engineering of the nbo metal-organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu2(Cu-tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2023

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal13020357